1 [1,0,1,-19252966408674012828065964616418441723,32685500727716376257923347071452044295907443056345614006] 23 [5836121652711390553392352147587734955:-69455519784971993679807552308609739430858248812:41166906143372569] [1168425140326369941586705900133272389:-17137023844710987140049387309945953892946213544:5429411004770479] [69505543020048021386994294068829048:1443380843339272397458721030742392016696304046:161157926442059] [33726169481462771119596650221569:49412130720987886904443301152758710388796:7098921280459] [15827793579244286948730141533934:6538434104009303265024749952830709029353:5389750958437] [695536410556937814932194749585:230697883363551870088729854504374414548:302787575875] [3765485669836998883000769028606015:1411381089291349753164768808558921002947204:1666240341498377] [3944555884631464928934930:5657335012046240705357319452802233:2406104] [1127027270330215920:3523978127407100674110377602:1] [256051163199552568592395095:-394563651945882403580468873435105816:51895117] [442619010291205562786415:-1167962768316319592876571517317044:50653] [55822325193081529476460202295:-151915114589061403100759698106532333112:6118445789] [356145268111068765982119246504180:-1150775031908416918955115365651634494501651:30094741482625] [178158613465020969197033760546270:184569435055535326363669745422918052707327:46079082400051] [192666510528582744766151703315:-10531550647702714814852169224678207441368:64481201] [743072319779988539974981500704194760635:964874722537391293613786748114488474882993683572:437169613520472565481] [524227677070779268411695177915:3941156276776007263792745630379334937996:9221366673] [109625308172049929108967881865:387496978790653709721061294119215460988:7988005999] [90690032605118118988993244301780:-953144078079942906360903670036536669593542:819763055279] [244353456546628958634824760:-775394556680837651292166377698874734:21253933] [435887272311260175170207520:4712624271973109965160039085789391367:3723875] [386870511037825543981230636169542701637111:83015454575998684006900205726968222686505350799684:159996363164349841378621] [62160011888235162136050:10099849221189668277354753748208:24389] 20 [0,0,0,0,0] P1 = (16902136044621724275584661392595/119224493521, -69455519784971993679807552308609739430858248812/41166906143372569) P2 = (6647882272466103821634772046571/30891226081, -17137023844710987140049387309945953892946213544/5429411004770479) P3 = (1277229332035649706664846727592/2961427561, 1443380843339272397458721030742392016696304046/161157926442059) P4 = (1754834771916476982132090651/369369961, 49412130720987886904443301152758710388796/7098921280459) P5 = (902743031953703698667092998/307406089, 6538434104009303265024749952830709029353/5389750958437) P6 = (103579510135061476534950819/45091225, 230697883363551870088729854504374414548/302787575875) P7 = (31762044569407766003397375255/14054813809, 1411381089291349753164768808558921002947204/1666240341498377) P8 = (29436984213667648723395/17956, 5657335012046240705357319452802233/2406104) P9 = (1127027270330215920, 3523978127407100674110377602) P10 = (686464244502821899711515/139129, -394563651945882403580468873435105816/51895117) P11 = (11962675953816366561795/1369, -1167962768316319592876571517317044/50653) P12 = (30520680805402695175757355/3345241, -151915114589061403100759698106532333112/6118445789) P13 = (11449775538050756019357635316/967521025, -1150775031908416918955115365651634494501651/30094741482625) P14 = (4969418243982621661795591770/1285294201, 184569435055535326363669745422918052707327/46079082400051) P15 = (480465113537612829840777315/160801, -10531550647702714814852169224678207441368/64481201) P16 = (97907154284679777917982542166035/57601436172721, 964874722537391293613786748114488474882993683572/437169613520472565481) P17 = (249989354826313432718977195/4397409, 3941156276776007263792745630379334937996/9221366673) P18 = (54840074123086507808388135/3996001, 387496978790653709721061294119215460988/7988005999) P19 = (9690141319063801580189469420/87590881, -953144078079942906360903670036536669593542/819763055279) P20 = (882142442406602738753880/76729, -775394556680837651292166377698874734/21253933) P21 = (2812175950395226936581984/24025, 4712624271973109965160039085789391367/3723875) P22 = (7126269737101017406079752337071371/2947180538019481, 83015454575998684006900205726968222686505350799684/ 159996363164349841378621) P23 = (2143448685801212487450/841, 10099849221189668277354753748208/24389)