>>> Level = conductor = 11 <<< Minimal curve = [0,-1,1,-10,-20] Enter sign (1,-1,0 for both):Newform information: 1 newform(s) at level 11: p0=2 #ap= 500 1: aplist = [ -2 -1 1 -2 1 4 -2 0 -1 0 7 3 -8 -6 8 -6 5 12 -7 -3 ...] aq = [ -1 ] ap0 = -2, dp0 = 2, np0 = 5, pdot = -10 SFE = 1, L/P = 2/5 lplus = 1, mplus = 1 lminus = 3, mminus = 2 [(4,1;1,3),-1,1;1] Modular symbol map (+,-) (0:1) = {0,oo} -> (-2/5,0) (1:1) = {0,1} -> (0,0) (2:1) = {0,1/2} -> (-2,0) (3:1) = {0,1/3} -> (-1,1) (4:1) = {0,1/4} -> (1,1) (5:1) = {0,1/5} -> (2,0) (6:1) = {0,1/6} -> (2,0) (7:1) = {0,1/7} -> (1,-1) (8:1) = {0,1/8} -> (-1,-1) (9:1) = {0,1/9} -> (-2,0) (10:1) = {0,1/10} -> (0,0) (1:0) = {oo,0} -> (2/5,0) Computation of further modular symbols Base point? (enter 0 for 0, or 1 for oo) Values of {0,r} for rational r: Enter numerator and denominator of r: All modular symbols with bounded denominator Enter maximum denominator (0 for none): {0,0} -> (0,0) {0,1/2} -> (-2,0) {0,1/3} -> (-1,1) {0,2/3} -> (-1,-1) {0,1/4} -> (1,1) {0,3/4} -> (1,-1) {0,1/5} -> (2,0) {0,2/5} -> (-3,1) {0,3/5} -> (-3,-1) {0,4/5} -> (2,0) >>> Level = conductor = 11 <<< Minimal curve = [0,-1,1,-10,-20] Enter sign (1,-1,0 for both):Newform information: 1 newform(s) at level 11: p0=2 #ap= 500 1: aplist = [ -2 -1 1 -2 1 4 -2 0 -1 0 7 3 -8 -6 8 -6 5 12 -7 -3 ...] aq = [ -1 ] ap0 = -2, dp0 = 2, np0 = 5, pdot = -10 SFE = 1, L/P = 2/5 lplus = 1, mplus = 1 [(-5,1;-1,2),-2,0;?] Modular symbol map (+) (0:1) = {0,oo} -> -2/5 (1:1) = {0,1} -> 0 (2:1) = {0,1/2} -> -2 (3:1) = {0,1/3} -> -1 (4:1) = {0,1/4} -> 1 (5:1) = {0,1/5} -> 2 (6:1) = {0,1/6} -> 2 (7:1) = {0,1/7} -> 1 (8:1) = {0,1/8} -> -1 (9:1) = {0,1/9} -> -2 (10:1) = {0,1/10} -> 0 (1:0) = {oo,0} -> 2/5 Computation of further modular symbols Base point? (enter 0 for 0, or 1 for oo) Values of {0,r} for rational r: Enter numerator and denominator of r: All modular symbols with bounded denominator Enter maximum denominator (0 for none): {0,0} -> 0 {0,1/2} -> -2 {0,1/3} -> -1 {0,2/3} -> -1 {0,1/4} -> 1 {0,3/4} -> 1 {0,1/5} -> 2 {0,2/5} -> -3 {0,3/5} -> -3 {0,4/5} -> 2 >>> Level = conductor = 11 <<< Minimal curve = [0,-1,1,-10,-20] Enter sign (1,-1,0 for both):Newform information: 1 newform(s) at level 11: p0=2 #ap= 500 1: aplist = [ -2 -1 1 -2 1 4 -2 0 -1 0 7 3 -8 -6 8 -6 5 12 -7 -3 ...] aq = [ -1 ] ap0 = -2, dp0 = 2, np0 = 5, pdot = -10 SFE = 1, L/P = 2/5 lplus = 1, mplus = 1 lminus = 3, mminus = 2 [(4,1;1,3),-1,1;1] Modular symbol map (+,-) (0:1) = {0,oo} -> (-2/5,0) (1:1) = {0,1} -> (0,0) (2:1) = {0,1/2} -> (-2,0) (3:1) = {0,1/3} -> (-1,1) (4:1) = {0,1/4} -> (1,1) (5:1) = {0,1/5} -> (2,0) (6:1) = {0,1/6} -> (2,0) (7:1) = {0,1/7} -> (1,-1) (8:1) = {0,1/8} -> (-1,-1) (9:1) = {0,1/9} -> (-2,0) (10:1) = {0,1/10} -> (0,0) (1:0) = {oo,0} -> (2/5,0) Computation of further modular symbols Base point? (enter 0 for 0, or 1 for oo) Values of {oo,r} for rational r: Enter numerator and denominator of r: All modular symbols with bounded denominator Enter maximum denominator (0 for none): {oo,0} -> (2/5,0) {oo,1/2} -> (-8/5,0) {oo,1/3} -> (-3/5,1) {oo,2/3} -> (-3/5,-1) {oo,1/4} -> (7/5,1) {oo,3/4} -> (7/5,-1) {oo,1/5} -> (12/5,0) {oo,2/5} -> (-13/5,1) {oo,3/5} -> (-13/5,-1) {oo,4/5} -> (12/5,0) >>> Level = conductor = 11 <<< Minimal curve = [0,-1,1,-10,-20] Enter sign (1,-1,0 for both):Newform information: 1 newform(s) at level 11: p0=2 #ap= 500 1: aplist = [ -2 -1 1 -2 1 4 -2 0 -1 0 7 3 -8 -6 8 -6 5 12 -7 -3 ...] aq = [ -1 ] ap0 = -2, dp0 = 2, np0 = 5, pdot = -10 SFE = 1, L/P = 2/5 lplus = 1, mplus = 1 [(-5,1;-1,2),-2,0;?] Modular symbol map (+) (0:1) = {0,oo} -> -2/5 (1:1) = {0,1} -> 0 (2:1) = {0,1/2} -> -2 (3:1) = {0,1/3} -> -1 (4:1) = {0,1/4} -> 1 (5:1) = {0,1/5} -> 2 (6:1) = {0,1/6} -> 2 (7:1) = {0,1/7} -> 1 (8:1) = {0,1/8} -> -1 (9:1) = {0,1/9} -> -2 (10:1) = {0,1/10} -> 0 (1:0) = {oo,0} -> 2/5 Computation of further modular symbols Base point? (enter 0 for 0, or 1 for oo) Values of {oo,r} for rational r: Enter numerator and denominator of r: All modular symbols with bounded denominator Enter maximum denominator (0 for none): {oo,0} -> 2/5 {oo,1/2} -> -8/5 {oo,1/3} -> -3/5 {oo,2/3} -> -3/5 {oo,1/4} -> 7/5 {oo,3/4} -> 7/5 {oo,1/5} -> 12/5 {oo,2/5} -> -13/5 {oo,3/5} -> -13/5 {oo,4/5} -> 12/5 >>> Level = conductor = 11 <<< Minimal curve = [0,-1,1,0,0] Enter sign (1,-1,0 for both):Newform information: 1 newform(s) at level 11: p0=2 #ap= 500 1: aplist = [ -2 -1 1 -2 1 4 -2 0 -1 0 7 3 -8 -6 8 -6 5 12 -7 -3 ...] aq = [ -1 ] ap0 = -2, dp0 = 2, np0 = 5, pdot = -10 SFE = 1, L/P = 2/5 lplus = 1, mplus = 1 lminus = 3, mminus = 2 [(4,1;1,3),-1,1;1] Modular symbol map (+,-) (0:1) = {0,oo} -> (-2/25,0) (1:1) = {0,1} -> (0,0) (2:1) = {0,1/2} -> (-2/5,0) (3:1) = {0,1/3} -> (-1/5,1) (4:1) = {0,1/4} -> (1/5,1) (5:1) = {0,1/5} -> (2/5,0) (6:1) = {0,1/6} -> (2/5,0) (7:1) = {0,1/7} -> (1/5,-1) (8:1) = {0,1/8} -> (-1/5,-1) (9:1) = {0,1/9} -> (-2/5,0) (10:1) = {0,1/10} -> (0,0) (1:0) = {oo,0} -> (2/25,0) Computation of further modular symbols Base point? (enter 0 for 0, or 1 for oo) Values of {0,r} for rational r: Enter numerator and denominator of r: All modular symbols with bounded denominator Enter maximum denominator (0 for none): {0,0} -> (0,0) {0,1/2} -> (-2/5,0) {0,1/3} -> (-1/5,1) {0,2/3} -> (-1/5,-1) {0,1/4} -> (1/5,1) {0,3/4} -> (1/5,-1) {0,1/5} -> (2/5,0) {0,2/5} -> (-3/5,1) {0,3/5} -> (-3/5,-1) {0,4/5} -> (2/5,0) >>> Level = conductor = 11 <<< Minimal curve = [0,-1,1,-7820,-263580] Enter sign (1,-1,0 for both):Newform information: 1 newform(s) at level 11: p0=2 #ap= 500 1: aplist = [ -2 -1 1 -2 1 4 -2 0 -1 0 7 3 -8 -6 8 -6 5 12 -7 -3 ...] aq = [ -1 ] ap0 = -2, dp0 = 2, np0 = 5, pdot = -10 SFE = 1, L/P = 2/5 lplus = 1, mplus = 1 lminus = 3, mminus = 2 [(4,1;1,3),-1,1;1] Modular symbol map (+,-) (0:1) = {0,oo} -> (-2,0) (1:1) = {0,1} -> (0,0) (2:1) = {0,1/2} -> (-10,0) (3:1) = {0,1/3} -> (-5,1) (4:1) = {0,1/4} -> (5,1) (5:1) = {0,1/5} -> (10,0) (6:1) = {0,1/6} -> (10,0) (7:1) = {0,1/7} -> (5,-1) (8:1) = {0,1/8} -> (-5,-1) (9:1) = {0,1/9} -> (-10,0) (10:1) = {0,1/10} -> (0,0) (1:0) = {oo,0} -> (2,0) Computation of further modular symbols Base point? (enter 0 for 0, or 1 for oo) Values of {0,r} for rational r: Enter numerator and denominator of r: All modular symbols with bounded denominator Enter maximum denominator (0 for none): {0,0} -> (0,0) {0,1/2} -> (-10,0) {0,1/3} -> (-5,1) {0,2/3} -> (-5,-1) {0,1/4} -> (5,1) {0,3/4} -> (5,-1) {0,1/5} -> (10,0) {0,2/5} -> (-15,1) {0,3/5} -> (-15,-1) {0,4/5} -> (10,0) >>> Level = conductor = 37 <<< Minimal curve = [0,0,1,-1,0] Enter sign (1,-1,0 for both):Newform information: 1 newform(s) at level 37: p0=2 #ap= 608 1: aplist = [ -2 -3 -2 -1 -5 -2 0 0 2 6 -4 -1 -9 2 -9 1 8 -8 8 9 ...] aq = [ 1 ] ap0 = -2, dp0 = 0, np0 = 5 SFE = -1, L/P = 0 lplus = 5, mplus = 4 lminus = 3, mminus = 2 [(14,1;3,8),1,-1;2] Modular symbol map (+,-) (0:1) = {0,oo} -> (0,0) (1:1) = {0,1} -> (0,0) (2:1) = {0,1/2} -> (0,0) (3:1) = {0,1/3} -> (0,1) (4:1) = {0,1/4} -> (0,1) (5:1) = {0,1/5} -> (1,0) (6:1) = {0,1/6} -> (0,0) (7:1) = {0,1/7} -> (1,0) (8:1) = {0,1/8} -> (1,-1) (9:1) = {0,1/9} -> (0,-1) (10:1) = {0,1/10} -> (0,0) (11:1) = {0,1/11} -> (0,0) (12:1) = {0,1/12} -> (0,-1) (13:1) = {0,1/13} -> (0,-1) (14:1) = {0,1/14} -> (-1,-1) (15:1) = {0,1/15} -> (-1,0) (16:1) = {0,1/16} -> (-1,0) (17:1) = {0,1/17} -> (0,1) (18:1) = {0,1/18} -> (0,0) (19:1) = {0,1/19} -> (0,0) (20:1) = {0,1/20} -> (0,-1) (21:1) = {0,1/21} -> (-1,0) (22:1) = {0,1/22} -> (-1,0) (23:1) = {0,1/23} -> (-1,1) (24:1) = {0,1/24} -> (0,1) (25:1) = {0,1/25} -> (0,1) (26:1) = {0,1/26} -> (0,0) (27:1) = {0,1/27} -> (0,0) (28:1) = {0,1/28} -> (0,1) (29:1) = {0,1/29} -> (1,1) (30:1) = {0,1/30} -> (1,0) (31:1) = {0,1/31} -> (0,0) (32:1) = {0,1/32} -> (1,0) (33:1) = {0,1/33} -> (0,-1) (34:1) = {0,1/34} -> (0,-1) (35:1) = {0,1/35} -> (0,0) (36:1) = {0,1/36} -> (0,0) (1:0) = {oo,0} -> (0,0) Computation of further modular symbols Base point? (enter 0 for 0, or 1 for oo) Values of {0,r} for rational r: Enter numerator and denominator of r: All modular symbols with bounded denominator Enter maximum denominator (0 for none): >>> Level = conductor = 37 <<< Minimal curve = [0,0,1,-1,0] Enter sign (1,-1,0 for both):Newform information: 1 newform(s) at level 37: p0=2 #ap= 608 1: aplist = [ -2 -3 -2 -1 -5 -2 0 0 2 6 -4 -1 -9 2 -9 1 8 -8 8 9 ...] aq = [ 1 ] ap0 = -2, dp0 = 0, np0 = 5 SFE = -1, L/P = 0 lplus = 5, mplus = 4 [(15,1;2,5),1,0;?] Modular symbol map (+) (0:1) = {0,oo} -> 0 (1:1) = {0,1} -> 0 (2:1) = {0,1/2} -> 0 (3:1) = {0,1/3} -> 0 (4:1) = {0,1/4} -> 0 (5:1) = {0,1/5} -> 1 (6:1) = {0,1/6} -> 0 (7:1) = {0,1/7} -> 1 (8:1) = {0,1/8} -> 1 (9:1) = {0,1/9} -> 0 (10:1) = {0,1/10} -> 0 (11:1) = {0,1/11} -> 0 (12:1) = {0,1/12} -> 0 (13:1) = {0,1/13} -> 0 (14:1) = {0,1/14} -> -1 (15:1) = {0,1/15} -> -1 (16:1) = {0,1/16} -> -1 (17:1) = {0,1/17} -> 0 (18:1) = {0,1/18} -> 0 (19:1) = {0,1/19} -> 0 (20:1) = {0,1/20} -> 0 (21:1) = {0,1/21} -> -1 (22:1) = {0,1/22} -> -1 (23:1) = {0,1/23} -> -1 (24:1) = {0,1/24} -> 0 (25:1) = {0,1/25} -> 0 (26:1) = {0,1/26} -> 0 (27:1) = {0,1/27} -> 0 (28:1) = {0,1/28} -> 0 (29:1) = {0,1/29} -> 1 (30:1) = {0,1/30} -> 1 (31:1) = {0,1/31} -> 0 (32:1) = {0,1/32} -> 1 (33:1) = {0,1/33} -> 0 (34:1) = {0,1/34} -> 0 (35:1) = {0,1/35} -> 0 (36:1) = {0,1/36} -> 0 (1:0) = {oo,0} -> 0 Computation of further modular symbols Base point? (enter 0 for 0, or 1 for oo) Values of {0,r} for rational r: Enter numerator and denominator of r: All modular symbols with bounded denominator Enter maximum denominator (0 for none): >>> Level = conductor = 389 <<< Minimal curve = [0,1,1,-2,0] Enter sign (1,-1,0 for both):Newform information: 1 newform(s) at level 389: p0=2 #ap= 1972 1: aplist = [ -2 -2 -3 -5 -4 -3 -6 5 -4 -6 4 -8 -3 12 -2 -6 3 -8 -5 -10 ...] aq = [ -1 ] ap0 = -2, dp0 = 0, np0 = 5 SFE = 1, L/P = 0 lplus = 5, mplus = 8 lminus = 3, mminus = 4 [(-111,1;-2,7),1,-1;2] Modular symbol map (+,-) (0:1) = {0,oo} -> (0,0) (1:1) = {0,1} -> (0,0) (2:1) = {0,1/2} -> (0,0) (3:1) = {0,1/3} -> (0,2) (4:1) = {0,1/4} -> (0,0) (5:1) = {0,1/5} -> (2,0) (6:1) = {0,1/6} -> (0,0) (7:1) = {0,1/7} -> (1,-1) (8:1) = {0,1/8} -> (0,1) (9:1) = {0,1/9} -> (-1,-1) (10:1) = {0,1/10} -> (0,0) (11:1) = {0,1/11} -> (1,0) (12:1) = {0,1/12} -> (0,-1) (13:1) = {0,1/13} -> (0,-2) (14:1) = {0,1/14} -> (-1,1) (15:1) = {0,1/15} -> (0,0) (16:1) = {0,1/16} -> (1,-1) (17:1) = {0,1/17} -> (0,1) (18:1) = {0,1/18} -> (1,-1) (19:1) = {0,1/19} -> (0,-1) (20:1) = {0,1/20} -> (-1,0) (21:1) = {0,1/21} -> (0,-1) (22:1) = {0,1/22} -> (0,0) (23:1) = {0,1/23} -> (0,1) (24:1) = {0,1/24} -> (1,-1) (25:1) = {0,1/25} -> (-1,-1) (26:1) = {0,1/26} -> (0,0) (27:1) = {0,1/27} -> (1,1) (28:1) = {0,1/28} -> (1,-1) (29:1) = {0,1/29} -> (0,-1) (30:1) = {0,1/30} -> (0,-2) (31:1) = {0,1/31} -> (-1,-3) (32:1) = {0,1/32} -> (-2,-1) (33:1) = {0,1/33} -> (-2,-1) (34:1) = {0,1/34} -> (-1,0) (35:1) = {0,1/35} -> (-1,0) (36:1) = {0,1/36} -> (0,1) (37:1) = {0,1/37} -> (0,1) (38:1) = {0,1/38} -> (-1,1) (39:1) = {0,1/39} -> (0,0) (40:1) = {0,1/40} -> (1,0) (41:1) = {0,1/41} -> (0,-1) (42:1) = {0,1/42} -> (-1,-1) (43:1) = {0,1/43} -> (1,-1) (44:1) = {0,1/44} -> (-1,-1) (45:1) = {0,1/45} -> (0,-2) (46:1) = {0,1/46} -> (-1,-3) (47:1) = {0,1/47} -> (-2,1) (48:1) = {0,1/48} -> (-2,1) (49:1) = {0,1/49} -> (0,-1) (50:1) = {0,1/50} -> (0,1) (51:1) = {0,1/51} -> (0,-1) (52:1) = {0,1/52} -> (0,1) (53:1) = {0,1/53} -> (0,0) (54:1) = {0,1/54} -> (0,-1) (55:1) = {0,1/55} -> (-1,-1) (56:1) = {0,1/56} -> (-1,1) (57:1) = {0,1/57} -> (-1,-1) (58:1) = {0,1/58} -> (-1,-1) (59:1) = {0,1/59} -> (-2,2) (60:1) = {0,1/60} -> (0,2) (61:1) = {0,1/61} -> (0,1) (62:1) = {0,1/62} -> (0,2) (63:1) = {0,1/63} -> (0,0) (64:1) = {0,1/64} -> (2,0) (65:1) = {0,1/65} -> (0,0) (66:1) = {0,1/66} -> (1,1) (67:1) = {0,1/67} -> (0,-2) (68:1) = {0,1/68} -> (0,-2) (69:1) = {0,1/69} -> (0,-2) (70:1) = {0,1/70} -> (0,-1) (71:1) = {0,1/71} -> (0,-2) (72:1) = {0,1/72} -> (-1,-1) (73:1) = {0,1/73} -> (-1,-1) (74:1) = {0,1/74} -> (-1,-2) (75:1) = {0,1/75} -> (0,0) (76:1) = {0,1/76} -> (0,-2) (77:1) = {0,1/77} -> (-2,0) (78:1) = {0,1/78} -> (-2,0) (79:1) = {0,1/79} -> (-2,0) (80:1) = {0,1/80} -> (-2,0) (81:1) = {0,1/81} -> (-1,1) (82:1) = {0,1/82} -> (-1,2) (83:1) = {0,1/83} -> (0,0) (84:1) = {0,1/84} -> (0,2) (85:1) = {0,1/85} -> (-1,1) (86:1) = {0,1/86} -> (-2,2) (87:1) = {0,1/87} -> (0,2) (88:1) = {0,1/88} -> (0,2) (89:1) = {0,1/89} -> (-1,1) (90:1) = {0,1/90} -> (-1,3) (91:1) = {0,1/91} -> (-2,2) (92:1) = {0,1/92} -> (-1,4) (93:1) = {0,1/93} -> (1,3) (94:1) = {0,1/94} -> (1,1) (95:1) = {0,1/95} -> (2,2) (96:1) = {0,1/96} -> (2,0) (97:1) = {0,1/97} -> (0,0) (98:1) = {0,1/98} -> (0,2) (99:1) = {0,1/99} -> (1,1) (100:1) = {0,1/100} -> (1,0) (101:1) = {0,1/101} -> (0,0) (102:1) = {0,1/102} -> (-1,1) (103:1) = {0,1/103} -> (1,0) (104:1) = {0,1/104} -> (0,0) (105:1) = {0,1/105} -> (-1,-1) (106:1) = {0,1/106} -> (-1,0) (107:1) = {0,1/107} -> (-1,0) (108:1) = {0,1/108} -> (-1,1) (109:1) = {0,1/109} -> (-1,2) (110:1) = {0,1/110} -> (-1,2) (111:1) = {0,1/111} -> (-1,1) (112:1) = {0,1/112} -> (-1,1) (113:1) = {0,1/113} -> (-1,3) (114:1) = {0,1/114} -> (1,1) (115:1) = {0,1/115} -> (0,0) (116:1) = {0,1/116} -> (1,1) (117:1) = {0,1/117} -> (0,2) (118:1) = {0,1/118} -> (1,-1) (119:1) = {0,1/119} -> (1,1) (120:1) = {0,1/120} -> (-1,-1) (121:1) = {0,1/121} -> (0,2) (122:1) = {0,1/122} -> (-1,1) (123:1) = {0,1/123} -> (0,2) (124:1) = {0,1/124} -> (-1,0) (125:1) = {0,1/125} -> (-1,1) (126:1) = {0,1/126} -> (0,2) (127:1) = {0,1/127} -> (0,1) (128:1) = {0,1/128} -> (-2,2) (129:1) = {0,1/129} -> (0,2) (130:1) = {0,1/130} -> (0,2) (131:1) = {0,1/131} -> (0,2) (132:1) = {0,1/132} -> (1,1) (133:1) = {0,1/133} -> (0,2) (134:1) = {0,1/134} -> (1,3) (135:1) = {0,1/135} -> (-1,1) (136:1) = {0,1/136} -> (0,2) (137:1) = {0,1/137} -> (-1,2) (138:1) = {0,1/138} -> (1,3) (139:1) = {0,1/139} -> (1,1) (140:1) = {0,1/140} -> (1,1) (141:1) = {0,1/141} -> (2,0) (142:1) = {0,1/142} -> (0,0) (143:1) = {0,1/143} -> (0,2) (144:1) = {0,1/144} -> (0,0) (145:1) = {0,1/145} -> (1,2) (146:1) = {0,1/146} -> (0,1) (147:1) = {0,1/147} -> (-1,2) (148:1) = {0,1/148} -> (1,4) (149:1) = {0,1/149} -> (2,1) (150:1) = {0,1/150} -> (0,0) (151:1) = {0,1/151} -> (0,2) (152:1) = {0,1/152} -> (0,2) (153:1) = {0,1/153} -> (0,0) (154:1) = {0,1/154} -> (2,1) (155:1) = {0,1/155} -> (2,2) (156:1) = {0,1/156} -> (2,0) (157:1) = {0,1/157} -> (0,0) (158:1) = {0,1/158} -> (2,1) (159:1) = {0,1/159} -> (1,-2) (160:1) = {0,1/160} -> (1,0) (161:1) = {0,1/161} -> (0,-1) (162:1) = {0,1/162} -> (0,1) (163:1) = {0,1/163} -> (1,1) (164:1) = {0,1/164} -> (1,1) (165:1) = {0,1/165} -> (2,1) (166:1) = {0,1/166} -> (0,0) (167:1) = {0,1/167} -> (2,0) (168:1) = {0,1/168} -> (1,-1) (169:1) = {0,1/169} -> (1,1) (170:1) = {0,1/170} -> (1,-1) (171:1) = {0,1/171} -> (2,2) (172:1) = {0,1/172} -> (1,-2) (173:1) = {0,1/173} -> (1,-1) (174:1) = {0,1/174} -> (1,-1) (175:1) = {0,1/175} -> (1,0) (176:1) = {0,1/176} -> (1,-1) (177:1) = {0,1/177} -> (2,0) (178:1) = {0,1/178} -> (2,-2) (179:1) = {0,1/179} -> (1,-3) (180:1) = {0,1/180} -> (0,-2) (181:1) = {0,1/181} -> (0,0) (182:1) = {0,1/182} -> (1,-2) (183:1) = {0,1/183} -> (0,-1) (184:1) = {0,1/184} -> (1,-2) (185:1) = {0,1/185} -> (1,-2) (186:1) = {0,1/186} -> (0,-1) (187:1) = {0,1/187} -> (0,-1) (188:1) = {0,1/188} -> (0,-2) (189:1) = {0,1/189} -> (-2,0) (190:1) = {0,1/190} -> (-1,-1) (191:1) = {0,1/191} -> (-2,0) (192:1) = {0,1/192} -> (-2,0) (193:1) = {0,1/193} -> (0,2) (194:1) = {0,1/194} -> (0,0) (195:1) = {0,1/195} -> (0,0) (196:1) = {0,1/196} -> (0,-2) (197:1) = {0,1/197} -> (-2,0) (198:1) = {0,1/198} -> (-2,0) (199:1) = {0,1/199} -> (-1,1) (200:1) = {0,1/200} -> (-2,0) (201:1) = {0,1/201} -> (0,2) (202:1) = {0,1/202} -> (0,1) (203:1) = {0,1/203} -> (0,1) (204:1) = {0,1/204} -> (1,2) (205:1) = {0,1/205} -> (1,2) (206:1) = {0,1/206} -> (0,1) (207:1) = {0,1/207} -> (1,2) (208:1) = {0,1/208} -> (0,0) (209:1) = {0,1/209} -> (0,2) (210:1) = {0,1/210} -> (1,3) (211:1) = {0,1/211} -> (2,2) (212:1) = {0,1/212} -> (2,0) (213:1) = {0,1/213} -> (1,1) (214:1) = {0,1/214} -> (1,0) (215:1) = {0,1/215} -> (1,1) (216:1) = {0,1/216} -> (1,1) (217:1) = {0,1/217} -> (1,2) (218:1) = {0,1/218} -> (2,-2) (219:1) = {0,1/219} -> (1,1) (220:1) = {0,1/220} -> (1,-1) (221:1) = {0,1/221} -> (1,1) (222:1) = {0,1/222} -> (2,0) (223:1) = {0,1/223} -> (0,0) (224:1) = {0,1/224} -> (2,-1) (225:1) = {0,1/225} -> (1,-1) (226:1) = {0,1/226} -> (1,-1) (227:1) = {0,1/227} -> (0,-1) (228:1) = {0,1/228} -> (0,1) (229:1) = {0,1/229} -> (1,0) (230:1) = {0,1/230} -> (1,2) (231:1) = {0,1/231} -> (2,-1) (232:1) = {0,1/232} -> (0,0) (233:1) = {0,1/233} -> (2,0) (234:1) = {0,1/234} -> (2,-2) (235:1) = {0,1/235} -> (2,-1) (236:1) = {0,1/236} -> (0,0) (237:1) = {0,1/237} -> (0,-2) (238:1) = {0,1/238} -> (0,-2) (239:1) = {0,1/239} -> (0,0) (240:1) = {0,1/240} -> (2,-1) (241:1) = {0,1/241} -> (1,-4) (242:1) = {0,1/242} -> (-1,-2) (243:1) = {0,1/243} -> (0,-1) (244:1) = {0,1/244} -> (1,-2) (245:1) = {0,1/245} -> (0,0) (246:1) = {0,1/246} -> (0,-2) (247:1) = {0,1/247} -> (0,0) (248:1) = {0,1/248} -> (2,0) (249:1) = {0,1/249} -> (1,-1) (250:1) = {0,1/250} -> (1,-1) (251:1) = {0,1/251} -> (1,-3) (252:1) = {0,1/252} -> (-1,-2) (253:1) = {0,1/253} -> (0,-2) (254:1) = {0,1/254} -> (-1,-1) (255:1) = {0,1/255} -> (1,-3) (256:1) = {0,1/256} -> (0,-2) (257:1) = {0,1/257} -> (1,-1) (258:1) = {0,1/258} -> (0,-2) (259:1) = {0,1/259} -> (0,-2) (260:1) = {0,1/260} -> (0,-2) (261:1) = {0,1/261} -> (-2,-2) (262:1) = {0,1/262} -> (0,-1) (263:1) = {0,1/263} -> (0,-2) (264:1) = {0,1/264} -> (-1,-1) (265:1) = {0,1/265} -> (-1,0) (266:1) = {0,1/266} -> (0,-2) (267:1) = {0,1/267} -> (-1,-1) (268:1) = {0,1/268} -> (0,-2) (269:1) = {0,1/269} -> (-1,1) (270:1) = {0,1/270} -> (1,-1) (271:1) = {0,1/271} -> (1,1) (272:1) = {0,1/272} -> (0,-2) (273:1) = {0,1/273} -> (1,-1) (274:1) = {0,1/274} -> (0,0) (275:1) = {0,1/275} -> (1,-1) (276:1) = {0,1/276} -> (-1,-3) (277:1) = {0,1/277} -> (-1,-1) (278:1) = {0,1/278} -> (-1,-1) (279:1) = {0,1/279} -> (-1,-2) (280:1) = {0,1/280} -> (-1,-2) (281:1) = {0,1/281} -> (-1,-1) (282:1) = {0,1/282} -> (-1,0) (283:1) = {0,1/283} -> (-1,0) (284:1) = {0,1/284} -> (-1,1) (285:1) = {0,1/285} -> (0,0) (286:1) = {0,1/286} -> (1,0) (287:1) = {0,1/287} -> (-1,-1) (288:1) = {0,1/288} -> (0,0) (289:1) = {0,1/289} -> (1,0) (290:1) = {0,1/290} -> (1,-1) (291:1) = {0,1/291} -> (0,-2) (292:1) = {0,1/292} -> (0,0) (293:1) = {0,1/293} -> (2,0) (294:1) = {0,1/294} -> (2,-2) (295:1) = {0,1/295} -> (1,-1) (296:1) = {0,1/296} -> (1,-3) (297:1) = {0,1/297} -> (-1,-4) (298:1) = {0,1/298} -> (-2,-2) (299:1) = {0,1/299} -> (-1,-3) (300:1) = {0,1/300} -> (-1,-1) (301:1) = {0,1/301} -> (0,-2) (302:1) = {0,1/302} -> (0,-2) (303:1) = {0,1/303} -> (-2,-2) (304:1) = {0,1/304} -> (-1,-1) (305:1) = {0,1/305} -> (0,-2) (306:1) = {0,1/306} -> (0,0) (307:1) = {0,1/307} -> (-1,-2) (308:1) = {0,1/308} -> (-1,-1) (309:1) = {0,1/309} -> (-2,0) (310:1) = {0,1/310} -> (-2,0) (311:1) = {0,1/311} -> (-2,0) (312:1) = {0,1/312} -> (-2,0) (313:1) = {0,1/313} -> (0,2) (314:1) = {0,1/314} -> (0,0) (315:1) = {0,1/315} -> (-1,2) (316:1) = {0,1/316} -> (-1,1) (317:1) = {0,1/317} -> (-1,1) (318:1) = {0,1/318} -> (0,2) (319:1) = {0,1/319} -> (0,1) (320:1) = {0,1/320} -> (0,2) (321:1) = {0,1/321} -> (0,2) (322:1) = {0,1/322} -> (0,2) (323:1) = {0,1/323} -> (1,-1) (324:1) = {0,1/324} -> (0,0) (325:1) = {0,1/325} -> (2,0) (326:1) = {0,1/326} -> (0,0) (327:1) = {0,1/327} -> (0,-2) (328:1) = {0,1/328} -> (0,-1) (329:1) = {0,1/329} -> (0,-2) (330:1) = {0,1/330} -> (-2,-2) (331:1) = {0,1/331} -> (-1,1) (332:1) = {0,1/332} -> (-1,1) (333:1) = {0,1/333} -> (-1,-1) (334:1) = {0,1/334} -> (-1,1) (335:1) = {0,1/335} -> (0,1) (336:1) = {0,1/336} -> (0,0) (337:1) = {0,1/337} -> (0,-1) (338:1) = {0,1/338} -> (0,1) (339:1) = {0,1/339} -> (0,-1) (340:1) = {0,1/340} -> (0,1) (341:1) = {0,1/341} -> (-2,-1) (342:1) = {0,1/342} -> (-2,-1) (343:1) = {0,1/343} -> (-1,3) (344:1) = {0,1/344} -> (0,2) (345:1) = {0,1/345} -> (-1,1) (346:1) = {0,1/346} -> (1,1) (347:1) = {0,1/347} -> (-1,1) (348:1) = {0,1/348} -> (0,1) (349:1) = {0,1/349} -> (1,0) (350:1) = {0,1/350} -> (0,0) (351:1) = {0,1/351} -> (-1,-1) (352:1) = {0,1/352} -> (0,-1) (353:1) = {0,1/353} -> (0,-1) (354:1) = {0,1/354} -> (-1,0) (355:1) = {0,1/355} -> (-1,0) (356:1) = {0,1/356} -> (-2,1) (357:1) = {0,1/357} -> (-2,1) (358:1) = {0,1/358} -> (-1,3) (359:1) = {0,1/359} -> (0,2) (360:1) = {0,1/360} -> (0,1) (361:1) = {0,1/361} -> (1,1) (362:1) = {0,1/362} -> (1,-1) (363:1) = {0,1/363} -> (0,0) (364:1) = {0,1/364} -> (-1,1) (365:1) = {0,1/365} -> (1,1) (366:1) = {0,1/366} -> (0,-1) (367:1) = {0,1/367} -> (0,0) (368:1) = {0,1/368} -> (0,1) (369:1) = {0,1/369} -> (-1,0) (370:1) = {0,1/370} -> (0,1) (371:1) = {0,1/371} -> (1,1) (372:1) = {0,1/372} -> (0,-1) (373:1) = {0,1/373} -> (1,1) (374:1) = {0,1/374} -> (0,0) (375:1) = {0,1/375} -> (-1,-1) (376:1) = {0,1/376} -> (0,2) (377:1) = {0,1/377} -> (0,1) (378:1) = {0,1/378} -> (1,0) (379:1) = {0,1/379} -> (0,0) (380:1) = {0,1/380} -> (-1,1) (381:1) = {0,1/381} -> (0,-1) (382:1) = {0,1/382} -> (1,1) (383:1) = {0,1/383} -> (0,0) (384:1) = {0,1/384} -> (2,0) (385:1) = {0,1/385} -> (0,0) (386:1) = {0,1/386} -> (0,-2) (387:1) = {0,1/387} -> (0,0) (388:1) = {0,1/388} -> (0,0) (1:0) = {oo,0} -> (0,0) Computation of further modular symbols Base point? (enter 0 for 0, or 1 for oo) Values of {oo,r} for rational r: Enter numerator and denominator of r: {oo,355/113} -> (3,1) Enter numerator and denominator of r: All modular symbols with bounded denominator Enter maximum denominator (0 for none): {oo,0} -> (0,0) {oo,1/2} -> (0,0) {oo,1/3} -> (0,2) {oo,2/3} -> (0,-2) {oo,1/4} -> (0,0) {oo,3/4} -> (0,0) {oo,1/5} -> (2,0) {oo,2/5} -> (-2,0) {oo,3/5} -> (-2,0) {oo,4/5} -> (2,0) {oo,1/6} -> (0,0) {oo,5/6} -> (0,0) {oo,1/7} -> (1,-1) {oo,2/7} -> (1,1) {oo,3/7} -> (-2,0) {oo,4/7} -> (-2,0) {oo,5/7} -> (1,-1) {oo,6/7} -> (1,1)