Verbose? Enter quartic coefficients a,b,c,d,e ? Limit on height? I = -26356388845395184406350565808061369918064, J = -352166609661875954997390187329873130323434589147579770870730368 Minimal model for Jacobian: [1,0,1,34318214642441646362435632562579908747,3184376895814127197244886284686214848599453811643486936756] Checking local solublity in R: Checking local solublity at primes [ 2 3 5 7 11 17 67 89 139 211 281 431 443 577 647 977 1613 3863 10567 11923 15361 73277 ]: Everywhere locally soluble. Searching for points on (-76507605796482039669,0,334447602052445326228,0,150542317465449993216) up to height 6 (x:y:z) = (-4:456379274456:5) Point = [2717410306797994865322390215100882986749083600480:31945036659247177505290259298595196252256878326866123825847:541269629646463252964269919701] height = 43.74623851 Curve = [1,0,1,34318214642441646362435632562579908747,3184376895814127197244886284686214848599453811643486936756] Point = [2717410306797994865322390215100882986749083600480:31945036659247177505290259298595196252256878326866123825847:541269629646463252964269919701] height = 43.74623851 Enter quartic coefficients a,b,c,d,e ?