-------------------------------------------------------------------------------- Integral model: [0,-1,1,-10,-20] Curve [0,-1,1,-10,-20] (reduced minimal model) b2 = -4 b4 = -20 b6 = -79 b8 = -21 c4 = 496 c6 = 20008 disc = -161051 (bad primes: [ 11 ]; # real components = 1) #torsion not yet computed Conductor = 11 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 11 5 1 5 I5 5 -1 -------------------------------------------------------------------------------- Integral model: [1,0,1,4,-6] Curve [1,0,1,4,-6] (reduced minimal model) b2 = 1 b4 = 9 b6 = -23 b8 = -26 c4 = -215 c6 = 5291 disc = -21952 (bad primes: [ 2 7 ]; # real components = 1) #torsion not yet computed Conductor = 14 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 6 1 6 I6 2 1 7 3 1 3 I3 3 -1 -------------------------------------------------------------------------------- Integral model: [1,1,1,-10,-10] Curve [1,1,1,-10,-10] (reduced minimal model) b2 = 5 b4 = -19 b6 = -39 b8 = -139 c4 = 481 c6 = 4879 disc = 50625 (bad primes: [ 3 5 ]; # real components = 2) #torsion not yet computed Conductor = 15 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 3 4 1 4 I4 2 1 5 4 1 4 I4 4 -1 -------------------------------------------------------------------------------- Integral model: [1,-1,1,-1,-14] Curve [1,-1,1,-1,-14] (reduced minimal model) b2 = -3 b4 = -1 b6 = -55 b8 = 41 c4 = 33 c6 = 12015 disc = -83521 (bad primes: [ 17 ]; # real components = 1) #torsion not yet computed Conductor = 17 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 17 4 1 4 I4 4 -1 -------------------------------------------------------------------------------- Integral model: [0,1,1,-9,-15] Curve [0,1,1,-9,-15] (reduced minimal model) b2 = 4 b4 = -18 b6 = -59 b8 = -140 c4 = 448 c6 = 10088 disc = -6859 (bad primes: [ 19 ]; # real components = 1) #torsion not yet computed Conductor = 19 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 19 3 1 3 I3 3 -1 -------------------------------------------------------------------------------- Integral model: [0,1,0,4,4] Curve [0,1,0,4,4] (reduced minimal model) b2 = 4 b4 = 8 b6 = 16 b8 = 0 c4 = -176 c6 = -2368 disc = -6400 (bad primes: [ 2 5 ]; # real components = 1) #torsion not yet computed Conductor = 20 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 8 2 0 IV* 3 -1 5 2 1 2 I2 2 1 -------------------------------------------------------------------------------- Integral model: [1,0,0,-4,-1] Curve [1,0,0,-4,-1] (reduced minimal model) b2 = 1 b4 = -8 b6 = -4 b8 = -17 c4 = 193 c6 = 575 disc = 3969 (bad primes: [ 3 7 ]; # real components = 2) #torsion not yet computed Conductor = 21 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 3 4 1 4 I4 4 -1 7 2 1 2 I2 2 1 -------------------------------------------------------------------------------- Integral model: [0,-1,0,-4,4] Curve [0,-1,0,-4,4] (reduced minimal model) b2 = -4 b4 = -8 b6 = 16 b8 = -32 c4 = 208 c6 = -2240 disc = 2304 (bad primes: [ 2 3 ]; # real components = 2) #torsion not yet computed Conductor = 24 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 8 3 0 I*1 4 -1 3 2 1 2 I2 2 1 -------------------------------------------------------------------------------- Integral model: [1,0,1,-5,-8] Curve [1,0,1,-5,-8] (reduced minimal model) b2 = 1 b4 = -9 b6 = -31 b8 = -28 c4 = 217 c6 = 6371 disc = -17576 (bad primes: [ 2 13 ]; # real components = 1) #torsion not yet computed Conductor = 26 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 3 1 3 I3 1 1 13 3 1 3 I3 3 -1 -------------------------------------------------------------------------------- Integral model: [1,-1,1,-3,3] Curve [1,-1,1,-3,3] (reduced minimal model) b2 = -3 b4 = -5 b6 = 13 b8 = -16 c4 = 129 c6 = -2241 disc = -1664 (bad primes: [ 2 13 ]; # real components = 1) #torsion not yet computed Conductor = 26 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 7 1 7 I7 7 -1 13 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [0,0,1,0,-7] Curve [0,0,1,0,-7] (reduced minimal model) b2 = 0 b4 = 0 b6 = -27 b8 = 0 c4 = 0 c6 = 5832 disc = -19683 (bad primes: [ 3 ]; # real components = 1) #torsion not yet computed Conductor = 27 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 3 9 3 0 IV* 3 -1 -------------------------------------------------------------------------------- Integral model: [1,0,1,1,2] Curve [1,0,1,1,2] (reduced minimal model) b2 = 1 b4 = 3 b6 = 9 b8 = 0 c4 = -71 c6 = -1837 disc = -2160 (bad primes: [ 2 3 5 ]; # real components = 1) #torsion not yet computed Conductor = 30 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 4 1 4 I4 2 1 3 3 1 3 I3 3 -1 5 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [0,0,0,4,0] Curve [0,0,0,4,0] (reduced minimal model) b2 = 0 b4 = 8 b6 = 0 b8 = -16 c4 = -192 c6 = 0 disc = -4096 (bad primes: [ 2 ]; # real components = 1) #torsion not yet computed Conductor = 32 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 12 5 0 I*3 4 -1 -------------------------------------------------------------------------------- Integral model: [1,1,0,-11,0] Curve [1,1,0,-11,0] (reduced minimal model) b2 = 5 b4 = -22 b6 = 0 b8 = -121 c4 = 553 c6 = -4085 disc = 88209 (bad primes: [ 3 11 ]; # real components = 2) #torsion not yet computed Conductor = 33 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 3 6 1 6 I6 2 1 11 2 1 2 I2 2 -1 -------------------------------------------------------------------------------- Integral model: [1,0,0,-3,1] Curve [1,0,0,-3,1] (reduced minimal model) b2 = 1 b4 = -6 b6 = 4 b8 = -8 c4 = 145 c6 = -1081 disc = 1088 (bad primes: [ 2 17 ]; # real components = 2) #torsion not yet computed Conductor = 34 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 6 1 6 I6 6 -1 17 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [0,1,1,9,1] Curve [0,1,1,9,1] (reduced minimal model) b2 = 4 b4 = 18 b6 = 5 b8 = -76 c4 = -416 c6 = 1448 disc = -42875 (bad primes: [ 5 7 ]; # real components = 1) #torsion not yet computed Conductor = 35 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 5 3 1 3 I3 1 1 7 3 1 3 I3 3 -1 -------------------------------------------------------------------------------- Integral model: [0,0,0,0,1] Curve [0,0,0,0,1] (reduced minimal model) b2 = 0 b4 = 0 b6 = 4 b8 = 0 c4 = 0 c6 = -864 disc = -432 (bad primes: [ 2 3 ]; # real components = 1) #torsion not yet computed Conductor = 36 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 4 2 0 IV 3 -1 3 3 2 0 III 2 1 -------------------------------------------------------------------------------- Integral model: [0,0,1,-1,0] Curve [0,0,1,-1,0] (reduced minimal model) b2 = 0 b4 = -2 b6 = 1 b8 = -1 c4 = 48 c6 = -216 disc = 37 (bad primes: [ 37 ]; # real components = 2) #torsion not yet computed Conductor = 37 Global Root Number = -1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 37 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [0,1,1,-23,-50] Curve [0,1,1,-23,-50] (reduced minimal model) b2 = 4 b4 = -46 b6 = -199 b8 = -728 c4 = 1120 c6 = 36296 disc = 50653 (bad primes: [ 37 ]; # real components = 2) #torsion not yet computed Conductor = 37 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 37 3 1 3 I3 3 -1 -------------------------------------------------------------------------------- Integral model: [1,0,1,9,90] Curve [1,0,1,9,90] (reduced minimal model) b2 = 1 b4 = 19 b6 = 361 b8 = 0 c4 = -455 c6 = -77293 disc = -3511808 (bad primes: [ 2 19 ]; # real components = 1) #torsion not yet computed Conductor = 38 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 9 1 9 I9 1 1 19 3 1 3 I3 3 -1 -------------------------------------------------------------------------------- Integral model: [1,1,1,0,1] Curve [1,1,1,0,1] (reduced minimal model) b2 = 5 b4 = 1 b6 = 5 b8 = 6 c4 = 1 c6 = -1025 disc = -608 (bad primes: [ 2 19 ]; # real components = 1) #torsion not yet computed Conductor = 38 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 5 1 5 I5 5 -1 19 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [1,1,0,-4,-5] Curve [1,1,0,-4,-5] (reduced minimal model) b2 = 5 b4 = -8 b6 = -20 b8 = -41 c4 = 217 c6 = 2755 disc = 1521 (bad primes: [ 3 13 ]; # real components = 2) #torsion not yet computed Conductor = 39 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 3 2 1 2 I2 2 1 13 2 1 2 I2 2 -1 -------------------------------------------------------------------------------- Integral model: [0,0,0,-7,-6] Curve [0,0,0,-7,-6] (reduced minimal model) b2 = 0 b4 = -14 b6 = -24 b8 = -49 c4 = 336 c6 = 5184 disc = 6400 (bad primes: [ 2 5 ]; # real components = 2) #torsion not yet computed Conductor = 40 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 8 3 0 I*1 2 1 5 2 1 2 I2 2 -1 -------------------------------------------------------------------------------- Integral model: [1,1,1,-4,5] Curve [1,1,1,-4,5] (reduced minimal model) b2 = 5 b4 = -7 b6 = 21 b8 = 14 c4 = 193 c6 = -5921 disc = -16128 (bad primes: [ 2 3 7 ]; # real components = 1) #torsion not yet computed Conductor = 42 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 8 1 8 I8 8 -1 3 2 1 2 I2 2 1 7 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [0,1,1,0,0] Curve [0,1,1,0,0] (reduced minimal model) b2 = 4 b4 = 0 b6 = 1 b8 = 1 c4 = 16 c6 = -280 disc = -43 (bad primes: [ 43 ]; # real components = 1) #torsion not yet computed Conductor = 43 Global Root Number = -1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 43 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [0,1,0,3,-1] Curve [0,1,0,3,-1] (reduced minimal model) b2 = 4 b4 = 6 b6 = -4 b8 = -13 c4 = -128 c6 = 1664 disc = -2816 (bad primes: [ 2 11 ]; # real components = 1) #torsion not yet computed Conductor = 44 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 8 2 0 IV* 3 -1 11 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [1,-1,0,0,-5] Curve [1,-1,0,0,-5] (reduced minimal model) b2 = -3 b4 = 0 b6 = -20 b8 = 15 c4 = 9 c6 = 4347 disc = -10935 (bad primes: [ 3 5 ]; # real components = 1) #torsion not yet computed Conductor = 45 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 3 7 2 1 I*1 2 -1 5 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [1,-1,0,-10,-12] Curve [1,-1,0,-10,-12] (reduced minimal model) b2 = -3 b4 = -20 b6 = -48 b8 = -64 c4 = 489 c6 = 12555 disc = -23552 (bad primes: [ 2 23 ]; # real components = 1) #torsion not yet computed Conductor = 46 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 10 1 10 I10 2 1 23 1 1 1 I1 1 -1 -------------------------------------------------------------------------------- Integral model: [0,1,0,-4,-4] Curve [0,1,0,-4,-4] (reduced minimal model) b2 = 4 b4 = -8 b6 = -16 b8 = -32 c4 = 208 c6 = 2240 disc = 2304 (bad primes: [ 2 3 ]; # real components = 2) #torsion not yet computed Conductor = 48 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 8 4 0 I*0 2 1 3 2 1 2 I2 2 -1 -------------------------------------------------------------------------------- Integral model: [1,-1,0,-2,-1] Curve [1,-1,0,-2,-1] (reduced minimal model) b2 = -3 b4 = -4 b6 = -4 b8 = -1 c4 = 105 c6 = 1323 disc = -343 (bad primes: [ 7 ]; # real components = 1) #torsion not yet computed Conductor = 49 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 7 3 2 0 III 2 -1 -------------------------------------------------------------------------------- Integral model: [1,0,1,-1,-2] Curve [1,0,1,-1,-2] (reduced minimal model) b2 = 1 b4 = -1 b6 = -7 b8 = -2 c4 = 25 c6 = 1475 disc = -1250 (bad primes: [ 2 5 ]; # real components = 1) #torsion not yet computed Conductor = 50 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 1 1 1 I1 1 1 5 4 2 0 IV 3 -1 -------------------------------------------------------------------------------- Integral model: [1,1,1,-3,1] Curve [1,1,1,-3,1] (reduced minimal model) b2 = 5 b4 = -5 b6 = 5 b8 = 0 c4 = 145 c6 = -2105 disc = -800 (bad primes: [ 2 5 ]; # real components = 1) #torsion not yet computed Conductor = 50 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 5 1 5 I5 5 -1 5 2 2 0 II 1 1 -------------------------------------------------------------------------------- Integral model: [0,1,1,1,-1] Curve [0,1,1,1,-1] (reduced minimal model) b2 = 4 b4 = 2 b6 = -3 b8 = -4 c4 = -32 c6 = 872 disc = -459 (bad primes: [ 3 17 ]; # real components = 1) #torsion not yet computed Conductor = 51 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 3 3 1 3 I3 3 -1 17 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [0,0,0,1,-10] Curve [0,0,0,1,-10] (reduced minimal model) b2 = 0 b4 = 2 b6 = -40 b8 = -1 c4 = -48 c6 = 8640 disc = -43264 (bad primes: [ 2 13 ]; # real components = 1) #torsion not yet computed Conductor = 52 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 8 2 0 IV* 1 -1 13 2 1 2 I2 2 1 -------------------------------------------------------------------------------- Integral model: [1,-1,1,0,0] Curve [1,-1,1,0,0] (reduced minimal model) b2 = -3 b4 = 1 b6 = 1 b8 = -1 c4 = -15 c6 = -297 disc = -53 (bad primes: [ 53 ]; # real components = 1) #torsion not yet computed Conductor = 53 Global Root Number = -1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 53 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [1,-1,0,12,8] Curve [1,-1,0,12,8] (reduced minimal model) b2 = -3 b4 = 24 b6 = 32 b8 = -168 c4 = -567 c6 = -9477 disc = -157464 (bad primes: [ 2 3 ]; # real components = 1) #torsion not yet computed Conductor = 54 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 3 1 3 I3 1 1 3 9 3 0 IV* 3 -1 -------------------------------------------------------------------------------- Integral model: [1,-1,1,1,-1] Curve [1,-1,1,1,-1] (reduced minimal model) b2 = -3 b4 = 3 b6 = -3 b8 = 0 c4 = -63 c6 = 351 disc = -216 (bad primes: [ 2 3 ]; # real components = 1) #torsion not yet computed Conductor = 54 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 3 1 3 I3 3 -1 3 3 3 0 II 1 1 -------------------------------------------------------------------------------- Integral model: [1,-1,0,-4,3] Curve [1,-1,0,-4,3] (reduced minimal model) b2 = -3 b4 = -8 b6 = 12 b8 = -25 c4 = 201 c6 = -1701 disc = 3025 (bad primes: [ 5 11 ]; # real components = 2) #torsion not yet computed Conductor = 55 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 5 2 1 2 I2 2 -1 11 2 1 2 I2 2 1 -------------------------------------------------------------------------------- Integral model: [0,-1,0,0,-4] Curve [0,-1,0,0,-4] (reduced minimal model) b2 = -4 b4 = 0 b6 = -16 b8 = 16 c4 = 16 c6 = 3520 disc = -7168 (bad primes: [ 2 7 ]; # real components = 1) #torsion not yet computed Conductor = 56 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 10 3 0 III* 2 1 7 1 1 1 I1 1 -1 -------------------------------------------------------------------------------- Integral model: [0,0,0,1,2] Curve [0,0,0,1,2] (reduced minimal model) b2 = 0 b4 = 2 b6 = 8 b8 = -1 c4 = -48 c6 = -1728 disc = -1792 (bad primes: [ 2 7 ]; # real components = 1) #torsion not yet computed Conductor = 56 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 8 3 0 I*1 4 -1 7 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [0,-1,1,-2,2] Curve [0,-1,1,-2,2] (reduced minimal model) b2 = -4 b4 = -4 b6 = 9 b8 = -13 c4 = 112 c6 = -1304 disc = -171 (bad primes: [ 3 19 ]; # real components = 1) #torsion not yet computed Conductor = 57 Global Root Number = -1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 3 2 1 2 I2 2 1 19 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [1,0,1,-7,5] Curve [1,0,1,-7,5] (reduced minimal model) b2 = 1 b4 = -13 b6 = 21 b8 = -37 c4 = 313 c6 = -5005 disc = 3249 (bad primes: [ 3 19 ]; # real components = 2) #torsion not yet computed Conductor = 57 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 3 2 1 2 I2 2 -1 19 2 1 2 I2 2 1 -------------------------------------------------------------------------------- Integral model: [0,1,1,20,-32] Curve [0,1,1,20,-32] (reduced minimal model) b2 = 4 b4 = 40 b6 = -127 b8 = -527 c4 = -944 c6 = 33128 disc = -1121931 (bad primes: [ 3 19 ]; # real components = 1) #torsion not yet computed Conductor = 57 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 3 10 1 10 I10 10 -1 19 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [1,-1,0,-1,1] Curve [1,-1,0,-1,1] (reduced minimal model) b2 = -3 b4 = -2 b6 = 4 b8 = -4 c4 = 57 c6 = -621 disc = -116 (bad primes: [ 2 29 ]; # real components = 1) #torsion not yet computed Conductor = 58 Global Root Number = -1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 2 1 2 I2 2 1 29 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [1,1,1,5,9] Curve [1,1,1,5,9] (reduced minimal model) b2 = 5 b4 = 11 b6 = 37 b8 = 16 c4 = -239 c6 = -6137 disc = -29696 (bad primes: [ 2 29 ]; # real components = 1) #torsion not yet computed Conductor = 58 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 10 1 10 I10 10 -1 29 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [1,0,0,-2,1] Curve [1,0,0,-2,1] (reduced minimal model) b2 = 1 b4 = -4 b6 = 4 b8 = -3 c4 = 97 c6 = -1009 disc = -61 (bad primes: [ 61 ]; # real components = 1) #torsion not yet computed Conductor = 61 Global Root Number = -1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 61 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [1,-1,1,-1,1] Curve [1,-1,1,-1,1] (reduced minimal model) b2 = -3 b4 = -1 b6 = 5 b8 = -4 c4 = 33 c6 = -945 disc = -496 (bad primes: [ 2 31 ]; # real components = 1) #torsion not yet computed Conductor = 62 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 4 1 4 I4 4 -1 31 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [1,-1,0,9,0] Curve [1,-1,0,9,0] (reduced minimal model) b2 = -3 b4 = 18 b6 = 0 b8 = -81 c4 = -423 c6 = -1917 disc = -45927 (bad primes: [ 3 7 ]; # real components = 1) #torsion not yet computed Conductor = 63 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 3 8 2 2 I*2 2 -1 7 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [0,0,0,-4,0] Curve [0,0,0,-4,0] (reduced minimal model) b2 = 0 b4 = -8 b6 = 0 b8 = -16 c4 = 192 c6 = 0 disc = 4096 (bad primes: [ 2 ]; # real components = 2) #torsion not yet computed Conductor = 64 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 12 6 0 I*2 4 -1 -------------------------------------------------------------------------------- Integral model: [1,0,0,-1,0] Curve [1,0,0,-1,0] (reduced minimal model) b2 = 1 b4 = -2 b6 = 0 b8 = -1 c4 = 49 c6 = -73 disc = 65 (bad primes: [ 5 13 ]; # real components = 2) #torsion not yet computed Conductor = 65 Global Root Number = -1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 5 1 1 1 I1 1 1 13 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [1,0,1,-6,4] Curve [1,0,1,-6,4] (reduced minimal model) b2 = 1 b4 = -11 b6 = 17 b8 = -26 c4 = 265 c6 = -4069 disc = 1188 (bad primes: [ 2 3 11 ]; # real components = 2) #torsion not yet computed Conductor = 66 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 2 1 2 I2 2 1 3 3 1 3 I3 3 -1 11 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [1,1,1,-2,-1] Curve [1,1,1,-2,-1] (reduced minimal model) b2 = 5 b4 = -3 b6 = -3 b8 = -6 c4 = 97 c6 = -17 disc = 528 (bad primes: [ 2 3 11 ]; # real components = 2) #torsion not yet computed Conductor = 66 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 4 1 4 I4 4 -1 3 1 1 1 I1 1 1 11 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [1,0,0,-45,81] Curve [1,0,0,-45,81] (reduced minimal model) b2 = 1 b4 = -90 b6 = 324 b8 = -1944 c4 = 2161 c6 = -73225 disc = 2737152 (bad primes: [ 2 3 11 ]; # real components = 2) #torsion not yet computed Conductor = 66 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 10 1 10 I10 10 -1 3 5 1 5 I5 5 -1 11 1 1 1 I1 1 -1 -------------------------------------------------------------------------------- Integral model: [0,1,1,-12,-21] Curve [0,1,1,-12,-21] (reduced minimal model) b2 = 4 b4 = -24 b6 = -83 b8 = -227 c4 = 592 c6 = 14408 disc = -67 (bad primes: [ 67 ]; # real components = 1) #torsion not yet computed Conductor = 67 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 67 1 1 1 I1 1 -1 -------------------------------------------------------------------------------- Integral model: [1,0,1,-1,-1] Curve [1,0,1,-1,-1] (reduced minimal model) b2 = 1 b4 = -1 b6 = -3 b8 = -1 c4 = 25 c6 = 611 disc = -207 (bad primes: [ 3 23 ]; # real components = 1) #torsion not yet computed Conductor = 69 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 3 2 1 2 I2 2 -1 23 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [1,-1,1,2,-3] Curve [1,-1,1,2,-3] (reduced minimal model) b2 = -3 b4 = 5 b6 = -11 b8 = 2 c4 = -111 c6 = 1863 disc = -2800 (bad primes: [ 2 5 7 ]; # real components = 1) #torsion not yet computed Conductor = 70 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 4 1 4 I4 4 -1 5 2 1 2 I2 2 1 7 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [0,0,0,6,-7] Curve [0,0,0,6,-7] (reduced minimal model) b2 = 0 b4 = 12 b6 = -28 b8 = -36 c4 = -288 c6 = 6048 disc = -34992 (bad primes: [ 2 3 ]; # real components = 1) #torsion not yet computed Conductor = 72 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 4 3 0 III 2 1 3 7 2 1 I*1 4 -1 -------------------------------------------------------------------------------- Integral model: [1,-1,0,4,-3] Curve [1,-1,0,4,-3] (reduced minimal model) b2 = -3 b4 = 8 b6 = -12 b8 = -7 c4 = -183 c6 = 1755 disc = -5329 (bad primes: [ 73 ]; # real components = 1) #torsion not yet computed Conductor = 73 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 73 2 1 2 I2 2 -1 -------------------------------------------------------------------------------- Integral model: [0,-1,1,-8,-7] Curve [0,-1,1,-8,-7] (reduced minimal model) b2 = -4 b4 = -16 b6 = -27 b8 = -37 c4 = 400 c6 = 8200 disc = -1875 (bad primes: [ 3 5 ]; # real components = 1) #torsion not yet computed Conductor = 75 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 3 1 1 1 I1 1 1 5 4 2 0 IV 1 -1 -------------------------------------------------------------------------------- Integral model: [1,0,1,-1,23] Curve [1,0,1,-1,23] (reduced minimal model) b2 = 1 b4 = -1 b6 = 93 b8 = 23 c4 = 25 c6 = -20125 disc = -234375 (bad primes: [ 3 5 ]; # real components = 1) #torsion not yet computed Conductor = 75 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 3 1 1 1 I1 1 -1 5 7 2 1 I*1 2 1 -------------------------------------------------------------------------------- Integral model: [0,1,1,2,4] Curve [0,1,1,2,4] (reduced minimal model) b2 = 4 b4 = 4 b6 = 17 b8 = 13 c4 = -80 c6 = -3160 disc = -6075 (bad primes: [ 3 5 ]; # real components = 1) #torsion not yet computed Conductor = 75 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 3 5 1 5 I5 5 -1 5 2 2 0 II 1 1 -------------------------------------------------------------------------------- Integral model: [0,-1,0,-21,-31] Curve [0,-1,0,-21,-31] (reduced minimal model) b2 = -4 b4 = -42 b6 = -124 b8 = -317 c4 = 1024 c6 = 32896 disc = -4864 (bad primes: [ 2 19 ]; # real components = 1) #torsion not yet computed Conductor = 76 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 8 2 0 IV* 1 -1 19 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [0,0,1,2,0] Curve [0,0,1,2,0] (reduced minimal model) b2 = 0 b4 = 4 b6 = 1 b8 = -4 c4 = -96 c6 = -216 disc = -539 (bad primes: [ 7 11 ]; # real components = 1) #torsion not yet computed Conductor = 77 Global Root Number = -1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 7 2 1 2 I2 2 1 11 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [1,1,0,4,11] Curve [1,1,0,4,11] (reduced minimal model) b2 = 5 b4 = 8 b6 = 44 b8 = 39 c4 = -167 c6 = -8189 disc = -41503 (bad primes: [ 7 11 ]; # real components = 1) #torsion not yet computed Conductor = 77 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 7 3 1 3 I3 1 1 11 2 1 2 I2 2 -1 -------------------------------------------------------------------------------- Integral model: [0,1,1,-49,600] Curve [0,1,1,-49,600] (reduced minimal model) b2 = 4 b4 = -98 b6 = 2401 b8 = 0 c4 = 2368 c6 = -532792 disc = -156590819 (bad primes: [ 7 11 ]; # real components = 1) #torsion not yet computed Conductor = 77 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 7 6 1 6 I6 6 -1 11 3 1 3 I3 1 1 -------------------------------------------------------------------------------- Integral model: [1,1,0,-19,685] Curve [1,1,0,-19,685] (reduced minimal model) b2 = 5 b4 = -38 b6 = 2740 b8 = 3064 c4 = 937 c6 = -598805 disc = -207028224 (bad primes: [ 2 3 13 ]; # real components = 1) #torsion not yet computed Conductor = 78 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 16 1 16 I16 2 1 3 5 1 5 I5 1 1 13 1 1 1 I1 1 -1 -------------------------------------------------------------------------------- Integral model: [1,1,1,-2,0] Curve [1,1,1,-2,0] (reduced minimal model) b2 = 5 b4 = -3 b6 = 1 b8 = -1 c4 = 97 c6 = -881 disc = 79 (bad primes: [ 79 ]; # real components = 2) #torsion not yet computed Conductor = 79 Global Root Number = -1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 79 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [0,0,0,-7,6] Curve [0,0,0,-7,6] (reduced minimal model) b2 = 0 b4 = -14 b6 = 24 b8 = -49 c4 = 336 c6 = -5184 disc = 6400 (bad primes: [ 2 5 ]; # real components = 2) #torsion not yet computed Conductor = 80 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 8 4 0 I*0 2 1 5 2 1 2 I2 2 -1 -------------------------------------------------------------------------------- Integral model: [0,-1,0,4,-4] Curve [0,-1,0,4,-4] (reduced minimal model) b2 = -4 b4 = 8 b6 = -16 b8 = 0 c4 = -176 c6 = 2368 disc = -6400 (bad primes: [ 2 5 ]; # real components = 1) #torsion not yet computed Conductor = 80 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 8 4 0 I*0 1 -1 5 2 1 2 I2 2 1 -------------------------------------------------------------------------------- Integral model: [1,0,1,-2,0] Curve [1,0,1,-2,0] (reduced minimal model) b2 = 1 b4 = -3 b6 = 1 b8 = -2 c4 = 73 c6 = -325 disc = 164 (bad primes: [ 2 41 ]; # real components = 2) #torsion not yet computed Conductor = 82 Global Root Number = -1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 2 1 2 I2 2 1 41 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [1,1,1,1,0] Curve [1,1,1,1,0] (reduced minimal model) b2 = 5 b4 = 3 b6 = 1 b8 = -1 c4 = -47 c6 = 199 disc = -83 (bad primes: [ 83 ]; # real components = 1) #torsion not yet computed Conductor = 83 Global Root Number = -1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 83 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [0,-1,0,-1,-2] Curve [0,-1,0,-1,-2] (reduced minimal model) b2 = -4 b4 = -2 b6 = -8 b8 = 7 c4 = 64 c6 = 2080 disc = -2352 (bad primes: [ 2 3 7 ]; # real components = 1) #torsion not yet computed Conductor = 84 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 4 2 0 IV 1 -1 3 1 1 1 I1 1 1 7 2 1 2 I2 2 1 -------------------------------------------------------------------------------- Integral model: [0,1,0,7,0] Curve [0,1,0,7,0] (reduced minimal model) b2 = 4 b4 = 14 b6 = 0 b8 = -49 c4 = -320 c6 = 1952 disc = -21168 (bad primes: [ 2 3 7 ]; # real components = 1) #torsion not yet computed Conductor = 84 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 4 2 0 IV 3 -1 3 3 1 3 I3 3 -1 7 2 1 2 I2 2 -1 -------------------------------------------------------------------------------- Integral model: [1,1,0,-8,-13] Curve [1,1,0,-8,-13] (reduced minimal model) b2 = 5 b4 = -16 b6 = -52 b8 = -129 c4 = 409 c6 = 8227 disc = 425 (bad primes: [ 5 17 ]; # real components = 2) #torsion not yet computed Conductor = 85 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 5 2 1 2 I2 2 1 17 1 1 1 I1 1 -1 -------------------------------------------------------------------------------- Integral model: [0,0,0,-4,4] Curve [0,0,0,-4,4] (reduced minimal model) b2 = 0 b4 = -8 b6 = 16 b8 = -16 c4 = 192 c6 = -3456 disc = -2816 (bad primes: [ 2 11 ]; # real components = 1) #torsion not yet computed Conductor = 88 Global Root Number = -1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 8 3 0 I*1 4 1 11 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [1,1,1,-1,0] Curve [1,1,1,-1,0] (reduced minimal model) b2 = 5 b4 = -1 b6 = 1 b8 = 1 c4 = 49 c6 = -521 disc = -89 (bad primes: [ 89 ]; # real components = 1) #torsion not yet computed Conductor = 89 Global Root Number = -1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 89 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [1,1,0,4,5] Curve [1,1,0,4,5] (reduced minimal model) b2 = 5 b4 = 8 b6 = 20 b8 = 9 c4 = -167 c6 = -3005 disc = -7921 (bad primes: [ 89 ]; # real components = 1) #torsion not yet computed Conductor = 89 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 89 2 1 2 I2 2 -1 -------------------------------------------------------------------------------- Integral model: [1,-1,0,6,0] Curve [1,-1,0,6,0] (reduced minimal model) b2 = -3 b4 = 12 b6 = 0 b8 = -36 c4 = -279 c6 = -1269 disc = -13500 (bad primes: [ 2 3 5 ]; # real components = 1) #torsion not yet computed Conductor = 90 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 2 1 2 I2 2 1 3 3 2 0 III 2 1 5 3 1 3 I3 3 -1 -------------------------------------------------------------------------------- Integral model: [1,-1,1,-8,11] Curve [1,-1,1,-8,11] (reduced minimal model) b2 = -3 b4 = -15 b6 = 45 b8 = -90 c4 = 369 c6 = -8073 disc = -8640 (bad primes: [ 2 3 5 ]; # real components = 1) #torsion not yet computed Conductor = 90 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 6 1 6 I6 6 -1 3 3 2 0 III 2 1 5 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [1,-1,1,13,-61] Curve [1,-1,1,13,-61] (reduced minimal model) b2 = -3 b4 = 27 b6 = -243 b8 = 0 c4 = -639 c6 = 49599 disc = -1574640 (bad primes: [ 2 3 5 ]; # real components = 1) #torsion not yet computed Conductor = 90 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 4 1 4 I4 4 -1 3 9 2 3 I*3 4 -1 5 1 1 1 I1 1 -1 -------------------------------------------------------------------------------- Integral model: [0,0,1,1,0] Curve [0,0,1,1,0] (reduced minimal model) b2 = 0 b4 = 2 b6 = 1 b8 = -1 c4 = -48 c6 = -216 disc = -91 (bad primes: [ 7 13 ]; # real components = 1) #torsion not yet computed Conductor = 91 Global Root Number = -1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 7 1 1 1 I1 1 1 13 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [0,1,1,-7,5] Curve [0,1,1,-7,5] (reduced minimal model) b2 = 4 b4 = -14 b6 = 21 b8 = -28 c4 = 352 c6 = -6616 disc = -91 (bad primes: [ 7 13 ]; # real components = 1) #torsion not yet computed Conductor = 91 Global Root Number = -1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 7 1 1 1 I1 1 -1 13 1 1 1 I1 1 -1 -------------------------------------------------------------------------------- Integral model: [0,1,0,2,1] Curve [0,1,0,2,1] (reduced minimal model) b2 = 4 b4 = 4 b6 = 4 b8 = 0 c4 = -80 c6 = -352 disc = -368 (bad primes: [ 2 23 ]; # real components = 1) #torsion not yet computed Conductor = 92 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 4 2 0 IV 3 -1 23 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [0,0,0,-1,1] Curve [0,0,0,-1,1] (reduced minimal model) b2 = 0 b4 = -2 b6 = 4 b8 = -1 c4 = 48 c6 = -864 disc = -368 (bad primes: [ 2 23 ]; # real components = 1) #torsion not yet computed Conductor = 92 Global Root Number = -1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 4 2 0 IV 3 -1 23 1 1 1 I1 1 -1 -------------------------------------------------------------------------------- Integral model: [1,-1,1,0,-1] Curve [1,-1,1,0,-1] (reduced minimal model) b2 = -3 b4 = 1 b6 = -3 b8 = 2 c4 = -15 c6 = 567 disc = -188 (bad primes: [ 2 47 ]; # real components = 1) #torsion not yet computed Conductor = 94 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 2 1 2 I2 2 -1 47 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [0,1,0,-2,0] Curve [0,1,0,-2,0] (reduced minimal model) b2 = 4 b4 = -4 b6 = 0 b8 = -4 c4 = 112 c6 = -640 disc = 576 (bad primes: [ 2 3 ]; # real components = 2) #torsion not yet computed Conductor = 96 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 6 5 0 III 2 1 3 2 1 2 I2 2 -1 -------------------------------------------------------------------------------- Integral model: [0,-1,0,-2,0] Curve [0,-1,0,-2,0] (reduced minimal model) b2 = -4 b4 = -4 b6 = 0 b8 = -4 c4 = 112 c6 = 640 disc = 576 (bad primes: [ 2 3 ]; # real components = 2) #torsion not yet computed Conductor = 96 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 6 5 0 III 2 -1 3 2 1 2 I2 2 1 -------------------------------------------------------------------------------- Integral model: [1,1,0,-25,-111] Curve [1,1,0,-25,-111] (reduced minimal model) b2 = 5 b4 = -50 b6 = -444 b8 = -1180 c4 = 1225 c6 = 86779 disc = -3294172 (bad primes: [ 2 7 ]; # real components = 1) #torsion not yet computed Conductor = 98 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 2 1 2 I2 2 1 7 7 2 1 I*1 2 -1 -------------------------------------------------------------------------------- Integral model: [1,-1,1,-2,0] Curve [1,-1,1,-2,0] (reduced minimal model) b2 = -3 b4 = -3 b6 = 1 b8 = -3 c4 = 81 c6 = 135 disc = 297 (bad primes: [ 3 11 ]; # real components = 2) #torsion not yet computed Conductor = 99 Global Root Number = -1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 3 3 2 0 III 2 1 11 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [1,-1,0,-15,8] Curve [1,-1,0,-15,8] (reduced minimal model) b2 = -3 b4 = -30 b6 = 32 b8 = -249 c4 = 729 c6 = -3645 disc = 216513 (bad primes: [ 3 11 ]; # real components = 2) #torsion not yet computed Conductor = 99 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 3 9 2 0 III* 2 1 11 1 1 1 I1 1 -1 -------------------------------------------------------------------------------- Integral model: [1,-1,1,-59,186] Curve [1,-1,1,-59,186] (reduced minimal model) b2 = -3 b4 = -117 b6 = 745 b8 = -3981 c4 = 2817 c6 = -148257 disc = 216513 (bad primes: [ 3 11 ]; # real components = 2) #torsion not yet computed Conductor = 99 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 3 9 2 3 I*3 4 -1 11 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [0,0,1,-3,-5] Curve [0,0,1,-3,-5] (reduced minimal model) b2 = 0 b4 = -6 b6 = -19 b8 = -9 c4 = 144 c6 = 4104 disc = -8019 (bad primes: [ 3 11 ]; # real components = 1) #torsion not yet computed Conductor = 99 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 3 6 2 0 I*0 1 -1 11 1 1 1 I1 1 1 -------------------------------------------------------------------------------- Integral model: [0,-1,0,-33,62] Curve [0,-1,0,-33,62] (reduced minimal model) b2 = -4 b4 = -66 b6 = 248 b8 = -1337 c4 = 1600 c6 = -44000 disc = 1250000 (bad primes: [ 2 5 ]; # real components = 2) #torsion not yet computed Conductor = 100 Global Root Number = 1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 4 2 0 IV 1 -1 5 7 2 1 I*1 2 1 -------------------------------------------------------------------------------- Integral model: [0,0,0,-36,0] Curve [0,0,0,-36,0] (reduced minimal model) b2 = 0 b4 = -72 b6 = 0 b8 = -1296 c4 = 1728 c6 = 0 disc = 2985984 (bad primes: [ 2 3 ]; # real components = 2) #torsion not yet computed Conductor = 576 Global Root Number = -1 Reduction type at bad primes: p ord(d) ord(N) ord(j) Kodaira c_p root_number 2 12 6 0 I*2 4 -1 3 6 2 0 I*0 4 -1 --------------------------------------------------------------------------------