Computed 78519 primes, largest is 1000253 Extra primes in list: Curve [1,0,0,-9632000,11505156432] Point [1794:-732:1] has infinite order Local heights: Sum so far = 0 log(den(x(P))) = 0 2: -0.5198603854199589820629240910936324260566251007701914405905100071200452164772710367043974952473140156565 3: 0 5: -1.0729586082894002497338395554841250930170675695123451479417652609827859918051051764200892520621197405333 7: 0 43: 0 Sum so far = -1.5928189937093592317967636465777575190736926702825365885322752681028312082823762131244867473094337561898 R: 2.6591777372351697106379171777341996972920761893137085990849604193273227819567664580094427822110846671662 Sum of local heights: 1.0663587435258104788411535311564421782183835190311720105526851512244915736743902448849560349016509109764 global height of [1794:-732:1] is 1.0663587435258104788411535311564421782183835190311720105526851512244915736743902448849560349016509109764 Curve [0,1,0,-19357973048906456166239827272707359553313344,21187731957757821187375878909257489490487412099497964528006317056] Input curve is not minimal at [ 2 ] Heights will be computed after mapping points to the minimal model [1,0,0,-1209873315556653510389989204544209972082084,331058311839965956052748107957148273288865814054655695750098704] Point [11376724821019368394185473144824:531128848935479591898724774494856605576120:2212245127] has infinite order Local heights: 1303: 14.344849154249690235603620395077325556187893008120017198267101647487168571034698862883609598254465320882 Sum so far = 14.344849154249690235603620395077325556187893008120017198267101647487168571034698862883609598254465320882 log(den(x(P))) = 14.344849154249690235603620395077325556187893008120017198267101647487168571034698862883609598254465320882 2: -0.64982548177494872757865511386704053257078137596273930073813750890005652059658879588049686905914251957063 3: -3.2042858419486532665694652743573666385551807936496859008928584731093583552209428200480459515400519256316 7: -1.9459101490553133051053527434431797296370847295818611884593901499375798627520692677876584985878715269931 13: -2.5649493574615367360534874415653186048052679447602071164190455106634646673244101793995746634404894887693 29: -1.683647914993237013591636016180955802747256456961372039460835175821390390568926166646683557408928211323 31: -2.5754904033638596844468732434067679078374541978604439788175385543562360624481634241603986235020649729297 43: -1.8806000578467812117364212566729235177795680924407777075958426324614295869364932192687959990419986434488 73: 0 79: -3.2770858893502661206297091561110581916301559183169572190591283381698545458433242086094552743305597049787 83: 0 89: 0 151: 0 199: -2.6466524123622461977050606459342686009455526402847362494532304939720496026904579500629921371491090237371 239: 0 263: 0 601: -6.3985949345352075792730805065791461321158652517313974246007004844989970499719731737852755946786480364573 617: 0 1433: 0 3449: -4.072919806468420453392926484639460182502821920485483498613314298014594425119712262801577989827526315447 6199: -4.3660716338509596986144265790573211827559692709318631192630445064520287152938899407747291356332810471928 1607849: -7.1452039094195084867538538892263668870756826570435860169910410159563007931008167769280037358413050635495 Sum so far = -28.066388638181248245847327955963848354770748241891093562097005494826172006833069323270078431786511159146 R: 48.791346916987674129415518895963499708776538989235459332368713903014226657552157302578853138139342116254 Sum of local heights: 20.724958278806425883568190939999651354005790747344365770271708408188054650719087979308774706352830957108 global height of [11376724821019368394185473144824:531128848935479591898724774494856605576120:2212245127] is 20.724958278806425883568190939999651354005790747344365770271708408188054650719087979308774706352830957108 Testing points on the curve [0,0,1,-7,6] The points are P0 = [0:2:1], P1 = [1:0:1], and P2 = [2:0:1] Their negatives are -P0 = [0:-3:1], -P1 = [1:-1:1], and -P2 = [2:-1:1] Computing their heights: Heights are 0.99090633315308797388259855288719422818432598249311083931508337741640200828756857760393418236367133926751, 0.66820516565192793503314205088782304708129183235953495290561093851504315269673218586650086473309992408244, and 0.76704335533154620579545064655221715456242461918849090382159571937411742205666289745531823277891939649419 The origin is [0:1:0] Now some additions etc,: P0 + P1 = [3:3:1] P0 - P1 = [8:21:1] P0 - P1 - P2 = [93:-143:27] P0.twice() = [245:-32:125] P0 + P0 = [245:-32:125] 3*P0 = [-74725:-438957:117649] P0 - P0 = [0:1:0] P0 +3 P1 - P2 = [816:-23310:1] 2P0 +2 P1 + P2 = [93:896:1] P0 -P1 -P2 = [93:-143:27] with height 3.5188832555391414837879545230426549481593909803113988737513473960896918684535926847613147712843718244401 2 (P0 -P1 -P2) = [936156018:-10370368:469097433] with height 14.075533022156565935151818092170619792637563921245595495005389584358767473814370739045259085137487297761 The quotient is 4 3 (P0 -P1 -P2) = [141154686087724689336:364929251737439849995:18067866971533021791] with height 31.669949299852273354091590707383894533434518822802589863762126564807226816082334162851832941559346419961 The quotient is 9 The regulator of P0, P1, P2 is 0.41714355875838396981711954461809339674981010609849838672473681975617770253416381366667499881931397967318